

AN AGENT BASED TRAFFIC MODEL OF VORARLBERG, AUSTRIA MATSim user meeting 2017 – Session II Sept. 11, 2017

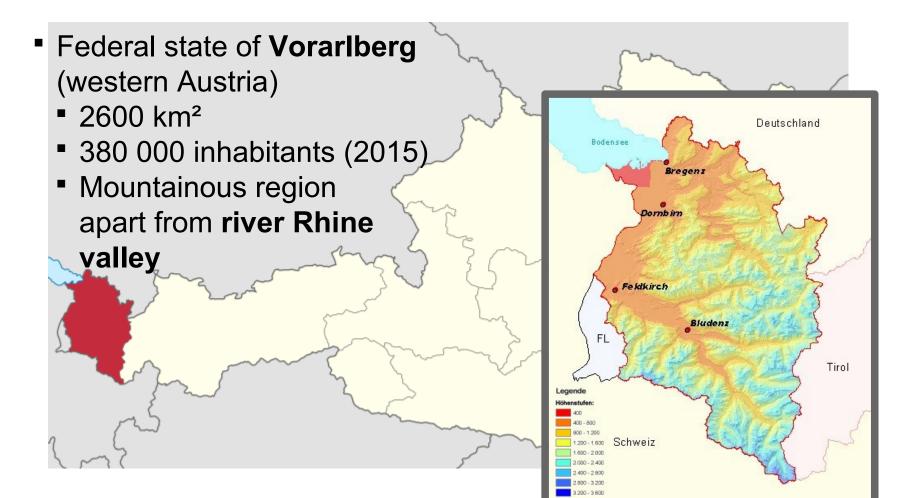
G. Richter

G. Lenz, Ch. Rudloff, M. Ulm

Gernot.lenz@ait.ac.at Gerald.Richter@ait.ac.at

PROJECT: SMART CITY RHEINTAL

- **Runtime:** 2012 2015
- Traffic model creation was only a part
- Funding: Austrian research funding agency FFG
- Total project **costs:** ~3.7 M€ (1.7 M€ funded)
- Involvement of:
 - Property developers
 - Local municipalities
 - Research institutions
 - Industry partners...
- GOALS & conditions:
 - achieve zero-emission targets
 - 4 regionally typical settlement development projects
 - SmartGrid and Mobility on Demand (MoD)
- basis: energy autonomy until 2050


BOSCH

STADT 🔺

FELDKIRCH

AREA OF INVESTIGATION

SCENARIO MODEL COMPONENTS

- Modes considered
 - MiT motorized individual transport
 - **PT** public transport
 - **BC** Bicycles
 - walk pedestrians
 - Activities considered
 - Work
 - Shop
 - Leisure
 - Education

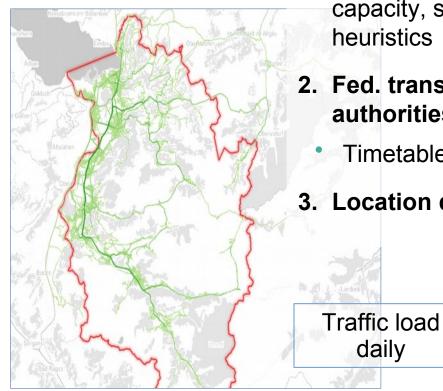
Ausbildun

Arbeiten (am Arbeitsort

;)(

- MATSim
- Mode choice model MCM
 - in-house development (context-aware modesequence)
- AIT multimodal router "ariadne"
 - Maintains parallel net representation
 - (MiT, BC, walk)
- online journey planner "EFA" (PT)

DATA SOURCES


Traffic demand

- **1. soc.dem.** (Statistics Austria)
 - population, employment
 - by age categories
 - Municipal
 - Rastered
- 2. Mobility survey 2013
 - 6500 persons
 - 3000 households
 - 18600 person*trips

3. Location data

Fed. Geodata [VoGIS]

- Land use
- Pol database

Traffic supply

- 1. From **OSM export**; made routable. capacity, speed, mode heuristics
- 2. Fed. transportation authorities [VVV]
 - Timetable queries
- 3. Location data

TRAFFIC DEMAND MODELING

Population synthesis:

quite dependent on given data

- (aggregation levels, completeness)
- scaling up <u>from small sample</u>
 → to large population
- Using additional knowledge
- Yields population similar in mobility behavior

Methodical:

- assign trip-locations
 - District-wise
 - Similar to survey (trip distances)
 - act./sojourn durations: drawn stochastically

Facility generation:

determination of likely locations

- and capacities
- Shops, Home, Work,
 - Leisure, Education
 - From: Pols, land use & list of schools
 - Generate: probability density
 - Draw accordingly (soc. Demographics)

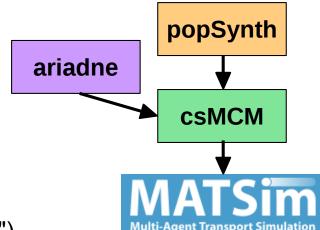
CONTEXT SENSITIVE MODE CHOICE MODELING

Mode-sequence & location aware

- (Mode-choices are not independent)
- Preparatory tasks:
 - Mobility survey data cleaning
 - Alternative stage chain generation (for <u>each</u> survey decision)
- Alternative stages' TT from:
 - EFA (PT)
 - "ariadne" (other modes)
 - Regression model for distortions in survey data (e.g.: parking spot hunt time, bus delays, ...)
 - Averaging for correction of geographic inaccuracies

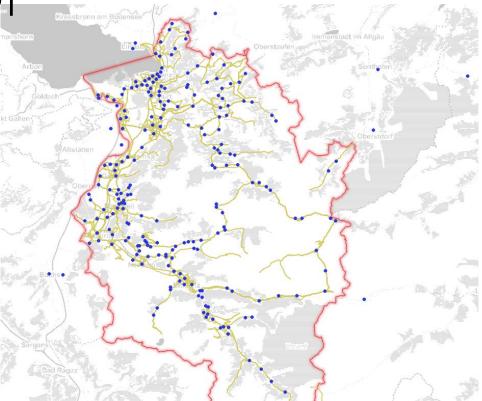
csMCM regards:

- Trip dep. vars (stage TT, dist., waiting, #changes)
- Trip chain dep. vars (prev. Modes, tot. Dist.)
- Estimation is done by maximum Likelihood method

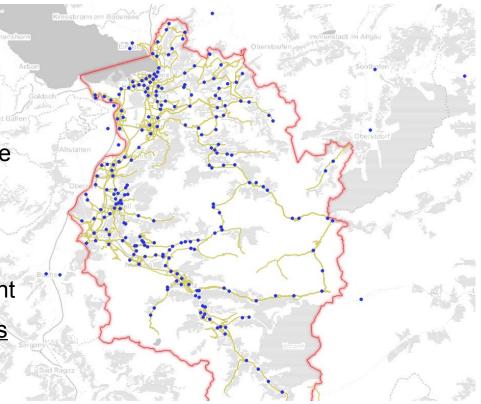

CsMCM application:

- Generate several probable choices for each trip-chain
- Pick one (some)
- Convert to plans

STUDIED SCENARIOS' OVERVIEW

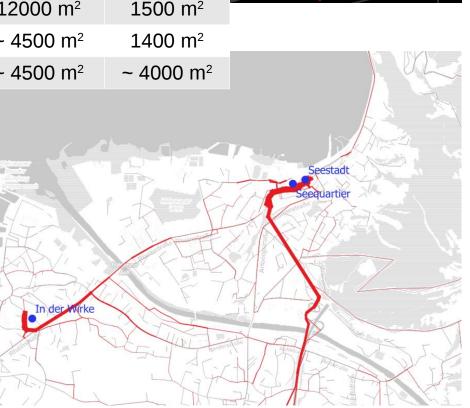

- simulated cooperatively with MATSim and our tools
 - 1. PT transport development ("PT+")
 - improving the timetable intervals
 - 2. new traffic demand causations ("newOD")
 - 3 large-scale construction projects
 - 3. introduction of new bikeways ("room4bikes")
 - make planned federal bike routes available
 - demands for EV charging infrastructure ("optEVplugs")
 - e-MIV charging spots
 - Energy demand
 - Charging strategies

SCENARIO "PT+"


- <u>increasing frequency</u> of PT timetables
- <u>all regular lines</u> of federal traffic region Vorarlberg
 - and <u>connections to</u> <u>neighboring</u> federal states and countries
- <u>no seasonally</u> limited traffic (Ski- / Hiking buses)

SCENARIO "PT+"

- <u>no single PT-plan relations</u> were available
- "virtual" improvement by
 - for <u>every route</u> (queried)
 - reduction of <u>total waiting</u> time to 50%
 - on <u>whole</u> connection <u>infrastructure</u>
- re-running modal split assignment
 - considering <u>only 2 OD points</u> per municipality
- increase of PT share in the modal split by 2.5 %

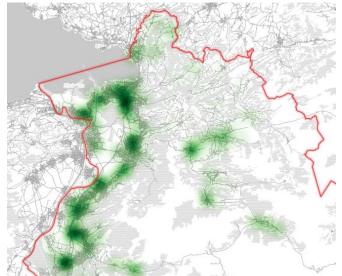


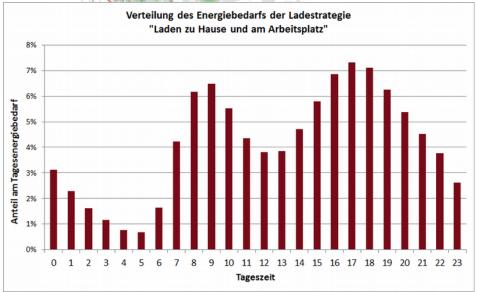
SCENARIO "NEWOD"

• 3 large-scale construction projects

_	0				
	Location	flats	commerce	office	
	Seestadt Bregenz	65	12000 m ²	1500 m²	
	Seequartier (Bregenz)	120	~ 4500 m ²	1400 m ²	
	In der Wirke (Hard)	~ 80	~ 4500 m ²	~ 4000 m ²	

- Implementation
 - a) introducing additional facilities
 - b) changing <u>sociodemographics</u>
 - population (habitats), workplaces
 - c) estimating capacities from areas
 - leisure, shopping
 - d) Demand, csMCM generation
 - e) MATSim optimization


SCENARIO "OPTEVPLUGS"


Assumptions:

- ALL conventional vehicles replaced by electric vehicles
- · charging facility availabilities
 - a) Home
 - b) Work
 - c) home & work
- charging <u>whenever possible</u> and <u>sojourn > 1h</u>
- 4 types of electric vehicles

Conclusions:

- required <u>energy throughout</u> the day
- number of <u>charging processes</u>

CONCLUDING REMARKS

- this was a <u>pilot project</u> in our research group
- MATSim showed <u>promising</u>, <u>flexible</u> possibilities for modeling mobility
- allowing <u>impact assessment</u> with higher relevance than conventional macroscopic tools
- led to <u>intent to further employ</u>
 MATSim in ongoing and future projects
 - Micro-PT (collective taxi)
 - construction site impact

REFERENCES

- SCR project: http://www.smartcityrheintal.at/
- OSM: www.openstreetmap.org
- Prandtstetter, M., M. Straub und J. Puchinger (2013): On the Way to a Multi-Modal Energy-Efficient Route; Vortrag: 2. D-A-CH Energieinformatik Konferenz, Wien; 12.11.2013 - 13.11.2013; in: "IEEE Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE", IEEE (Hrg.); (2013), ISBN: 978-3-85403-298-4; S. 4779 - 4784.
- Herry Consult GmbH (2014): Mobilitätserhebung Vorarlberg 2013 Eckdaten der Befragung, Einstellungen und Meinungen; Mai 2014
- Müller, K. und K.W. Axhausen (2011): Population synthesis for microsimulation: State of the art; paper presented at the 90th Annual Meeting of the Transportation Research Board, Washington, D.C., Jänner 2011.
- VoGIS: Geodatenservice des Landes Vorarlberg unter www.vogis.at
- Statistik Austria, 2014 a/b, Gebäude- und Wohnungszählung 2001 (GWZ 2001) / 2013 (GWR 2013), zählsprengelbasierte / rasterbasierte Auswertung, kostenpflichtig zu erwerben

THANK YOU! Gerald Richter, 2017-09-11

