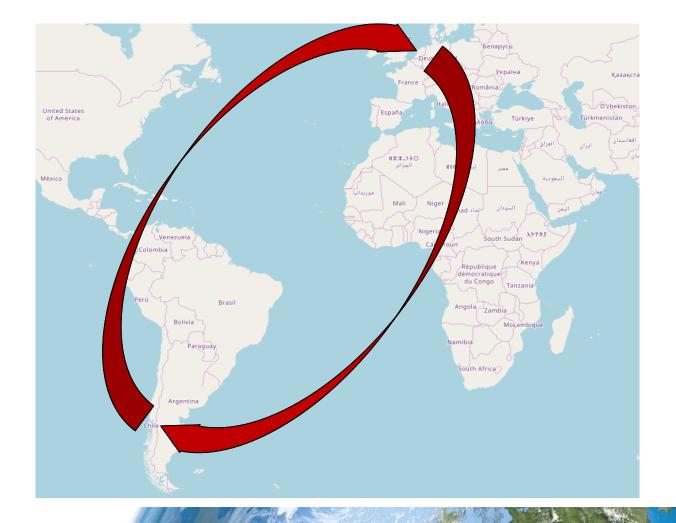
The MATSim Santiago open data model

Agenda

1. History of MATSim Santiago

- 2. Recent developments
- 3. Challenges and first applications


4. Summary and outlook

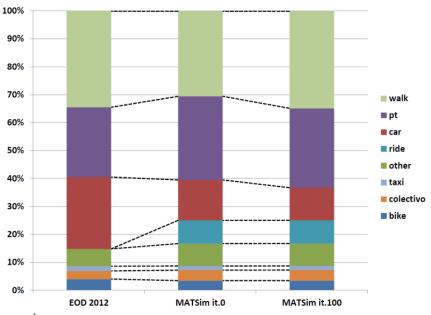
History of MATSim Santiago

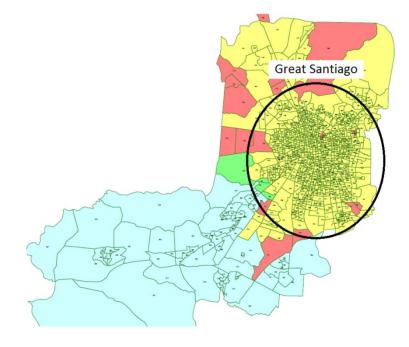
How it all started

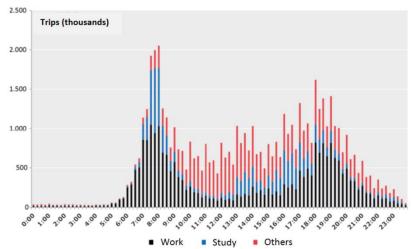
First impressions

Open data sources

- Street network from OSM
- 2. Public transit supply data as GTFS
- 3. Travel diaries (and other stuff) from EOD2012
 - Exported from Microsoft Access into *.csv
 - Includes some freight traffic (and other information)

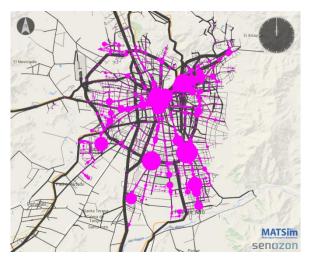

v1: first simulations

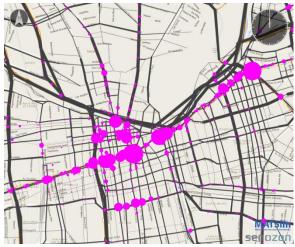

Raw data:

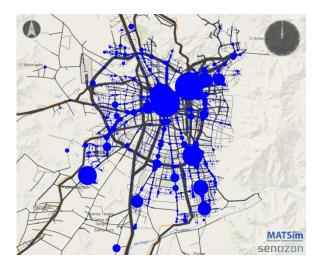

- 60'054 individuals (~1%)
- 113'591 trips

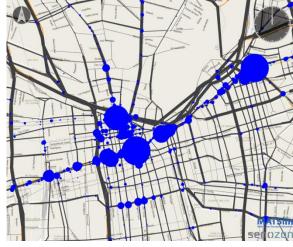
MATSim:

- 42'459 individuals
- 103'055 trips









v1: integrating public transit

v1: behavioral parameters and calibration

Table 2: Behavioral parameters.

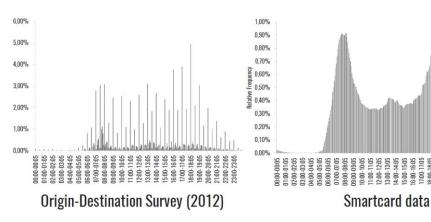
Parameter	Value	Unit		
Source: Munizaga et al.	(2008)			
Marginal utility of activity duration (β_{dur})	+ 4.014	utils/h		
Marginal utility of traveling (β_{trav})	- 1.056	utils/h		
Marginal utility of money (β_m)	+ 0.0023	utils/CLP		
Approximate average $VTTS$	$+\ 2204.35$	CLP/h		
Results from calibration				
ASC car	+ 1.100	utils		
ASC PT	- 0.883	utils		
ASC walk	+ 0.000	utils		

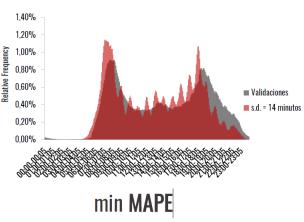
$$C_{mode,n+1} = C_{mode,n} - log\left(\frac{p_{mode,n}}{p_{mode,it.0}}\right)$$

Table 3: Modal split: comparison between input data and MATSim synthetic population.

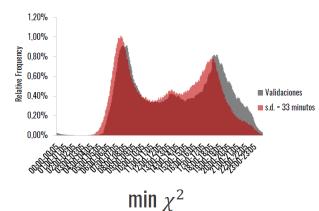
Mode	Sectra (2014)	Raw data	MATS	Sim it.0	MATSim it.200
Bike	4.00	3.41	_	3.41	3.41
Car	25.70	23.27		14.40	14.28
Colectivo	2.90	3.11		3.73	3.73
Other	6.20	7.74	_	7.98	7.98
PT	25.00	31.50		29.88	28.19
Ride	in "Car"	in "Car"		8.26	8.26
Taxi	1.70	1.46		1.47	1.47
Train	in "Other"	in "Other"	_	0.03	0.03
Walk	34.50	29.78		30.83	32.64

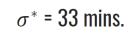
Recent developments




Leo (v2): overview

- Remove agents that were interviewed in summer vacation time and on weekends
- Use expansion factors to create a 1% and a 10% sample
- Add time-dependent tolls to tollways
- Randomize activity end times using smartcard data
- Randomize activity locations using land use data




Leo (v2): randomize activity end times using smartcard data

 σ^* = 14 mins.

Leo (v2): randomize activity locations using land use data

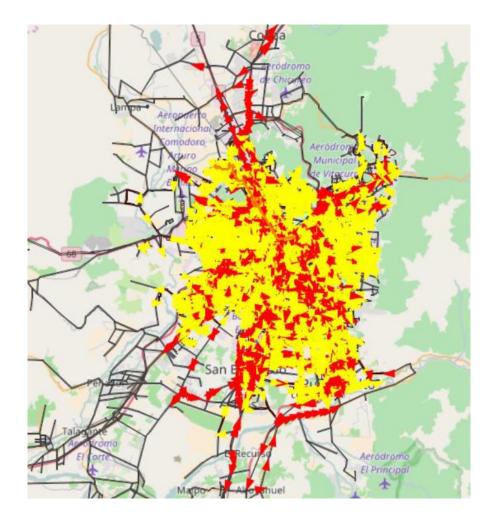
Original locations 1% – 20:00 Randomized locations 1% – 20:00

Felix (v3): implementing colectivos

Figure 2: MATSim network and multiline strings

Felix (v3): travel times, slack times, fares

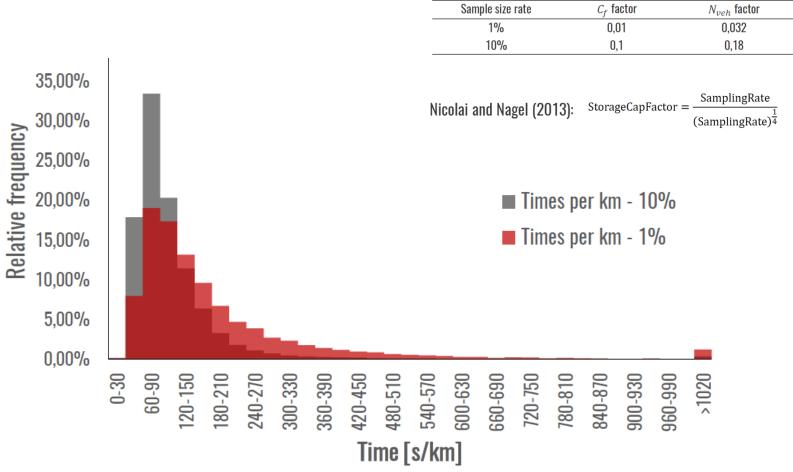
Table 2: Summary of colectivo observations


T-1-1-	2. 6	1-1	tir.	interva	۱
Lanie	2.	OTEC	111/()	mierva	18

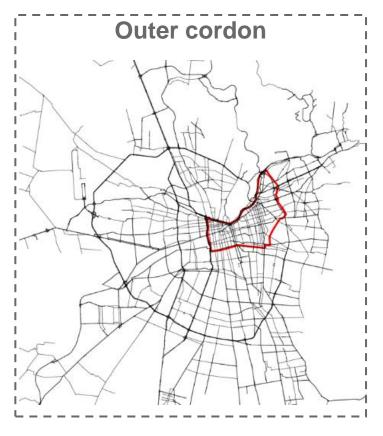
colectivo line	Slack time	Interval	travel time	fare
5055	00:00:54	00:02:26	00:09:15	300 CLP
5036	00:05:51	00:03:06	00:31:59	450 CLP
9006	00:04:41	00:03:33	00:42:24	800 CLP
8009	00:02:27	00:02:47	00:43:18	600 CLP
7013	00:01:46	00:07:03	00:48:55	1000 CLP
7001	00:02:09	00:04:24	01:02:07	900 CLP
7002	00:01:55	00:04:13	01:05:44	900 CLP
6066 - 6068		00:04:45		1750 – 2100 CLP
8002	00:00:34	00:05:38	01:47:36	1400 CLP
5004	00:02:44	00:03:29	01:48:00	1700 CLP
8020	00:02:10	00:15:11	02:15:00	2300 CLP
Arithmetic mean	00:02:31	00:05:09	01:06:45	1116 CLP

Colectivo	Average	Peak	Off-peak	
line	interval	interval	interval	
8020	00:15:11	00:15:30	00:14:20	
7013	00:07:03	00:07:30	00:06:23	
8002	00:05:38	00:06:13	00:05:00	
7002	00:04:13	00:04:15	00:04:10	
7001	00:04:24	00:04:15	00:04:35	
6066 - 6068	00:04:45	00:03:47	00:05:43	
5004	00:03:29	00:03:36	00:03:13	
9006	00:03:33	00:03:03	00:04:03	
5036	00:03:06	00:02:48	00:03:20	
8009	00:02:47	00:02:33	00:03:05	
5055	00:02:26	00:02:11	00:02:38	
arithmetic mean	00:05:09	00:05:04	00:05:08	

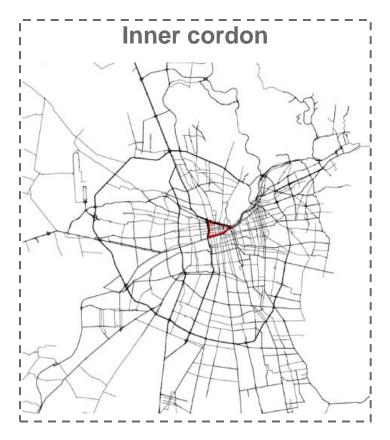
Felix (v3): colectivo (also) as PT feeder



Challenges and first applications



Influence of sample size on travel times



Cordon pricing schemes: setup

$$\tau_{in} = \$6.000$$
 $\tau_{out} = \$3.600$

$$\tau_{in} = \$6.000$$
 $\tau_{out} = \$2.650$

Cordon pricing schemes: elasticities 7:30-8:30

In- and outflow				
Links	1% case [%]	10% case [%]	SDG (2009) [%]	
Out	-83,69	-86,16	~-70	
In	-83,03	-83,48	~-50	

Total travel distance car				
Scenario	1% case [%]	10% case [%]	SDG (2009) [%]	
Exterior Cordon	-23,46	-22,68	~-5	
Triangle Cordon	-4,44	-4,10	~-1,5	

Number of car trips					
Scenario Caso 1% [%] Caso 10% [%] SDG (2009) [%]					
Exterior Cordon	-20,79	-20,32	-5,8		
Triangle Cordon	-3,90	-3,51	-1,4		

Summary and outlook

Open data scenario

- Documentation: https://svn.vsp.tu-berlin.de/repos/public-gundenatations/vspwp/2016/16-02/ (more to come for v2, v3, ...)
- Different versions of the runnable MATSim scenarios (no MATSim installation necessary): https://svn.vsp.tu-berlin.de/repos/public-syn/matsim/scenarios/countries/cl/santiago/
- Code: https://github.com/matsim-org/playgrounds/tree/master/santiago

Further steps

- Ideal for BSc or MSc theses; the idea is to integrate every improvement into the current state and create a new version.
- Possible improvements:
 - Synthesize a 10% or 100% population
 - Calibrate travel times, counts
 - Add tolled roads
 - · Activity distribution according to land use data
 - Network corrections with automatic feedback to OpenStreetMap
 - Add freight transport (important for emissions!)
 - Add colectivos, taxis
 - Include capacity constraints for PT vehicles
 - Map PT routes to the road network (interaction with cars)
 - Include bike as transport mode
 - ...

Backup

Opportunities

- Social value: better transport planning through competition (identification of weak spots of the system, policy studies, environmental/social analysis, provision of public infrastructure)
- Commercial value: creating a platform for innovative mobility-based services (car sharing systems, supply chain/location planning, delivery/logistic planning, navigation, ...)
- Transparency:
- Participation/engagement:

