Preferred citation style for this presentation

Hörl, S. (2017) The IVT Baseline Scenario: Current version and outlook, Presented at the MATSim User Meeting 2017, Haifa, 2017

Animated online version

The IVT Baseline Scenario: Current version and outlook

Sebastian Hörl

ETH Zürich, IVT
11 September 2017

EH
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Demographics

- Microcensus Mobility and Transport 2010
- 2015 Version available
- Generalized Ranking
- Implementation Kirill Müller

Demographics

Bösch et al.
2016

Activity Chains

- Hot-Deck Matching with certain attributes
- Sampling from Microcensus
- Long-term behavioural change
- Input scenario vs. dynamic rescheduling?
- Activity-based model?

Primary Locations

- Structural Survey 2010-2012
- Enterprise Census 2012
- Sampling from commuters matrices (municipalities)
- Assignment by home - workplace distance (consistency with activity chains)
- So far no validation available

Secondary Activity Facilities

- Enterprise Census 2012
- Conversion: Patrick Bösch
- Capacities
- Rather undocumented
- Not used yet

Secondary Activity Assignment

- New sampling approach (Hörl)
- Aim: Location choices that are consistent with activity plans
- No capacity constraints yet
- Iterative process:
- Generation of feasible "unsnapped" distance chains
- Discretization of locations

Secondary Activity Assignment

Algorithm 1: Sampling of feasible distances tours

1. Construct distribution of distances for 5 min bins of travel times for each mode
2. Per agent:
a. Sample a chain of distances based on travel times in the plan
b. Use gravity model to relax locations in \mathbb{R}^{2}
c. If chain is not feasible, continue with (a)
d. Abort if maximum number of iterations is reached \rightarrow Infeasible

Secondary Activity Assignment

Algorithm 1: Sampling of feasible distances tours

Secondary Activity Assignment

Algorithm 1: Sampling of feasible distances tours

Secondary Activity Assignment

Algorithm 1: Sampling of feasible distances tours

Secondary Activity Assignment

Algorithm 1: Sampling of feasible distances tours

Secondary Activity Assignment

Algorithm 2: Spatial discretization

1. Sample a continuous chain (Algorithm 1)
2. Discretize locations (based on available facilities)
3. If discretization error is too large, continue with 1
4. Abort if maximum number of iterations is reached

Secondary Activity Assignment

Algorithm 2: Spatial discretization

Secondary Activity Assignment

Algorithm 2: Spatial discretization

Secondary Activity Assignment

Algorithm 2: Spatial discretization

Secondary Activity Assignment

Algorithm 2: Spatial discretization

Secondary Activity Assignment

Algorithm 2: Spatial discretization

Secondary Activity Assignment

Algorithm 2: Spatial discretization

Secondary Activity Assignment

Algorithm 2: Spatial discretization

Secondary Activity Assignment

Algorithm 2: Spatial discretization

Secondary Activity Assignment

Secondary Activity Assignment

Mode Choice

- Problems
- Currently: Based on whole subtours
- One choice per 10\% of iterations, long runtime
- Public Transport can be "walk"
- Connection between activities and legs?

Mode Choice

- New mode choice model (Hörl \& Balac)
- Choice of complete trip chains (structural constraints)
- Mode choice model based on Microcensus (Basil Schmid)
- Mode choice model based on Automated Vehicle survey (Felix Becker)

Mode Choice

Algorithm: Mode choice by chain

1. Construct all feasible mode chains for an agent
2. Compute probability for each trip
3. Compute weights / joint probability for each chain
4. Perform choice
a. Either Select chain with largest weight
b. Or Treat as categorical distribution and sample

Mode Choice

日皿 $P($ Chain 2$) \sim P($ Leg $1=p t) * P($ Leg $2=p t) * \ldots$
且员 $P($ Chain 3$) \sim P(\operatorname{Leg} 1=p t) * P(\text { Leg } 2=\text { walk })^{*} \ldots$

Modes ${ }^{\text {Legs }}-\mathrm{n}$

Mode Choice

Additional Remarks

- Temporal shifting of activity plans
- Simulated travel times
- Public Transit (currently fallback to teleportation)

Outlook

- Setup of validation pipeline
- "Unit tests for scenarios"
- Open Switzerland Scenario
- Future scenarios (ARE, ...)

Questions?

References

- Bösch, P., K. Müller, F. Ciari (2015) The IVT Baseline Scenario, Presented at the 16th Swiss Transport Research Conference, May 2016, Ascona.

